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Abstract 

A cellular model of atomic hydrogen is hypothesized in which the Fermi pressure due to 
a single foreign electron invading the cell is examined in lieu of the entire degenerate gas. 
The Sch.rSdinger equation is then solved in a self-consistent fashion with Laplace's 
equation for the electronic cloud. The Wronskian of the two possible wave functions does 
not vanish because tlre homogeneous Neumann condition is applied to the surface of the 
cell, while the Coulomb singularity compels a solution to be generated from the origin. 
Two quantum numbers result, one for the energy and one for the density, thus there is 
a lower limit to the density at zero temperature. Further corrections for electron waves 
by the Born Von-Karmen conditions broadens the radial quantum number into a con- 
tinuum, but with an absolute lower limit to the density given by the ground state 
solutions to the Schrbdinger equation. 

We obtain a bulk modulus of compressibility for metallic hydrogen of about 
4.66 x 1012 dynes/g on the average over a pressure range of 1 to 25 megabars with a 
density range of 0.4 to 4 g/cc. This is about a factor of 2 greater than Wigner and 
Huntington's estimate (1935). The zero temperature pressure and density at a maximum 
is 20-05 Mb and 4.8 g/cc. At the density Wigner and Huntington propose (0-8 g/cc) for the 
metallic modification, we obtain a necessary pressure of 2.2 Mb. Wigner and Huntington 
suggest 0.25 Mb while Stewart's data (1956) suggest about 1 Mb. Recent investigations 
in the literature run the gamut from 1 to 20 Mb (Alder & Christian, 1960). Furthermore, 
we obtain a latent heat of fusion of 134.3 kcal/g at maximum density, which decreases 
to zero at 19.1 Mb. The result means that the metallic state of hydrogen exists only over 
a pressure range of 1 Mb and below 19 Mb, it is a viscoelastic fluid until the molecular 
solid, formed above 20 Mb begins to form a plasma. 

1. Introduction 

Experimental procedures in manufacturing metallic hydrogen are of two 
types-dynamic and static. Some megabars of pressure are believed to be 
necessary in order to achieve the product and this extreme requirement has 
been the cause of difficulty in its manufacture. Dynamic experiments are 
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generally conducted with explosives, a procedure not only having laboratory 
disadvantages, but which yield results difficult to interpret. For, during the 
course of  a dynamic test, the material may be carried away from its equilib~um 
state and therefore it is not clear if the actual derivative products of the lattice 
are being measured at the minimal point or not. Hence, it is not surprising that 
the explosive experiments of Alder and Christiansen gave a suspiciously large 
pressure of about 20 Mb for the formation of metallic hydrogen, while the 
calculations of Wigner and Huntington led to only 1 Mb. The static tests, 
which in principal are an improvement, carry with them the difficulty of con- 
tainment because most materials enter a region of plastic flow at far below 
0.5 Mb, generally one or two decades below. Hence a static test requires some 
clever engineering in the design of a high pressure vessel which will either 
remain rigid during the test or isochoric. 

Since the original Wigner and Huntington work (1935), calculations have 
proceeded, principally by Hartree-Fock methods of their variation (Neece, 
Rogers & Hoover, 1971). The most recent one by Dynin (1972), based upon 
a sophisticated electron-phonon interaction, gives a value of 5.85 Mb for the 
transition pressure and this value is the next highest result to Alder and 
Christian (1960). Calculations by Ashcroft and Langreth (1967) apply a com- 
bination of perturbation theory and empirical formulae to the group of 
nearly free-electron metals. With a strong foothold on direct experimental 
evidence, they are able to calculate a number of mechanical properties quite 
accurately for these metals. With this confidence, Hubbard (1971) has used 
a method of Ashcroft (1967), based upon the polarization of ionic sites in 
an electronic plasma, in order to calculate the mechanical properties of 
metallic hydrogen. His results are in agreement with the Wigner and Huntington 
type essentially, which estimate a few rnegabars pressure for the transition 
pressure. Numerous calculations have been performed in the almost 40-year 
period since that original work was published, including the work by Kronig, 
DeBoer & Korringa (1946), who also corroborate these results. However, most 
of these calculations have been concerned with refinements of  higher-order 
effects while adapting the basic approach of Wigner and Huntington for the 
kinetic and potential energies. Thus regardless of how fine the refinements, 
no principal deviation from the original calculation could really be expected, 
nor would one be anticipated were it not for such divergent properties found 
in high density matter by Bridgeman and Joffe as early as the last century. 
For example, in an isotropic state of stress, glass will withstand millions of 
p.s.i, pressure without fracture or plastic flow, and can even be made conducting 
in this way. Thus it is not clear that an extrapolation of successful results at 
ordinary pressure will be valid at ultra-high pressures because the material may 
enter some polymorphic state which cannot be reached by continuous extra- 
polation of the normal one. 

All calculations commence with a statement of the Schr6dinger equation 
for an electronic gas, they then proceed to replace the Laplacian by a kinetic 
energy of a degenerate Fermi sphere, while the electrostatic energy of  some 
periodic configuration is added to produce a Hamiltonian. The result is an 



DENSITY QUANTIZATION OF METALLIC HYDROGEN 3 

equation for a semi-classical plastic substance whose cohesive energy is given 
in the form of 

A B 
E = - - - +  .75+C (1.1) 

rs rs 

in which rs is the Wigner-Seitz radius, a measure of the intracellular spacings. 
Then a minimum to equation (1.1) is found which yields both the radial 
spacing r s and the cohesive energy E. This thermodynamic technique has met 
with remarkable success and so continues to be used. The ground state solu- 
tions to the Schr6dinger equation are the zero temperature solutions, hence 
they should have no thermal fluctuation. Furthermore, a bound quantum 
mechanical system shows zero statistical fluctuation, so deviations in orbital 
size are impossible except for relativistic effects within the uncertainty 
principal. Thus it is not clear that derivative properties actually exist at zero 
temperature. Periodic electron waves over the entire lattice introduce a variable 
wave vector (k) which may then give the cohesive energy, derivative properties; 
however, these properties are external to the cell method. Within the logical 
consequences of that construction, both the energy and the density should be 
quantized, and this is consistent with the structure of the free hydrogen atom 
which has discrete energetic and radial quantum numbers. Therefore the cell 
should be related to the free atom by a continuity in this quantum number 
with a transition from discrete to continuous values as atoms are brought 
together from infinity at zero temperature. In this way it would avoid the 
designation of some intermediate point for this transition to take place; a 
point any theory would like to avoid no matter how attractive thermo- 
dynamic arguments are. Thitring (1956), in his classical text, uses thermo- 
dynamics to derive the structure of the hydrogen atom as a pedagogical 
exercise; however it is clear that this technique will not explain the Lamb 
shift. The success of semi-classical theories must simply be considered as 
concomitant explanations with ultimate theoretical limitations. 

The formally correct procedure to this problem, we feel, is to solve the 
Schr6dinger equation in a self-consistent way with Laplace's equation and 
obtain the quantum structure. Using statistical information from a Fermi-Dirac 
gas in Laplace's equation, as in the Thomas-Fermi method, denies the solution 
the complete eigenvalue character implicit in the structure of the SchrSdinger 
equation. Nevertheless, the classical results are useful as guides and it appears 
that what saves solid hydrogen from instability is the collective degenerate 
effect of  the Fermi electronic gas. 

2. The ttydrogen Atomic  Cell 

The cell method, when normally applied to hydrogen, results in a number 
of formal difficulties which either reflect the limitations of the method or the 
correctness of the procedure which has been applied. Schr/Sdinger, in seeking 
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an explanation for the Balmer formula, was led to the equation of a hyper- 
geometric function. 

V ~ + -  + E  ~ = 0 (2.1) 
r 

By requiring the solution to be homogeneous at the near and far boundary, 
the eigenvalues were mapped onto a set of positive definite intergers (squared). 

- 1  
E = n2 (2.2) 

The absence of n = 0 gave the atom stability while at the same time the 
hydrogen lines were dispersed in agreement with the Batmer formula. The 
condition that the solution squared be integrable over an infinite domain is 
equivalent to two homogeneous Dirichlet conditions - a t  the origin and 
infinity. Thus the Wronskian of the solution vanishes at the center of con- 
vergence about which the solutions are generated, and hence the solution is 
unique. 

Kronig, DeBoer & Korringa (1946) have used equation (1.1) to explain the 
properties of  a metallic hydrogen cell. In this case, the boundary condition 
becomes a homogeneous Neumann condition at the cell boundary. 

limit 37; = 0 (2.3) 
r -~r  s ~r 

Then the eigenvalue spectrum is continuous and unstable, 

E = - 3 / r  s (2.3) 

One would expect these eigenvalues to converge to those of the free atom 
as the cell size is increased to infinity, but clearly such a coalescence is im- 
possible since the solutions represent two disjoint subsets of  the class of 
hypergeometric function, one of which is the common Leguerre polynomial. 

Of course, in the ceil case, the collective Laplacian of the degenerate free 
electron gas is introduced to avoid the catastrophe of having the electron fall 
into the nucleus, but this implies that stability of the crystal is due to a plasma 
effect and it is difficult to associate the stability of an ordered phenomenon 
to an essentially disordered cause. It is consistent with the spirit of quantum 
mechanics to expect that every system which shows a discrete order on an 
atomic and molecular level should be quantized. Furthermore a discrete 
radial quantum number for a solid is also consistent with the structure of 
the isolated atom to which it is expected to evolve in a continuous fashion 
by a variation in the density. 

Kronig, DeBoer & Korringa (1946) add the electronic Fermi energy of a 
degenerate free electron gas to their solution of  SchrSdinger's equation and 
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obtain the equation of a deformable plastic substance which is now known as 
Jellium. 

2 . 2 1 / r s  2 - 3 / r  s = 0 (2.5) 

To this, corrections of correlation and exchange energies can be added. 
The above equation has a thermodynamic minimum at r s = 1.47 giving a zero 
temperature cohesive energy very close to a Rydberg. Thus the heat of 
vaporization depends strongly on the correlation and exchange energies 
which are calculated by perturbation theory of other standard models. 

The Wigner-Seitz analysis of a Bravais lattice yields an electrostatic energy 
of 1-8004]r s (Ryd.), to which the Fermi energy (in equation (2.4)) and other 
corrections may be added. Wigner and Huntington obtain a value o f r s  = 1.5 

andE = 1.156 Ryd. The increment above a Rydberg is the latent heat of 
vaporization which amounts to about 517°K for the diatomic gas-a rather 
significant figure for the planet Jupiter. Hydrogen molecules may also form 
crystals and an experimental pressure-energy plot for them has been given by 
Stewart (1956). Since the dissociation of the molecule is about one-third the 
energy of the atom, one can extrapolate his curves to this energy. The result 
indicates that molecular hydrogen could dissociate into the atomic crystal 
at about 1 Mb of pressure, providing there is no fluid phase intermediately. 
This result is an extrapolation to a value close to the ground state energy of 
the atomic form, therefore it is uncertain if the formation of the molecular 
crystal will help or hinder the formation of the atomic form. 

The Schr6dinger equation of a hydrogen celt in atomic units is 

2 + _  __ N e  e + E ~ = 0 (2.6) 
r 

in which Vee represents neighboring electronic interactions. We take this to 
be an external electron, either from the conduction band or a neighbor which 
undertakes invasion into the Wigner-Seitz cell. Because the foreign electron 
is indistinguishable from the cellular one, we require that Poisson's equation 
be satisfied as a concomitant condition. Thus we have two coupled equations. 

Because of the Coulomb singularity, a solution must be generated from 
the origin. Since the homogeneous boundary condition applies to the far 
boundary, the Wronskian, in general, would not vanish at the point which 
the solutions are generated; thus there will be two independent solutions to 
this system of equations which can be combined into one complex form, 
'~1 + i~2. Therefore the homogeneous Neumann condition (1955) then has 
two parts, both real and imaginary gradients must vanish at the far boundary. 
These two constraints will lead to discrete values for E and rs- the radial 
quantum number. 

Equation (2.6), the Schr6dinger equation for a solid, contains the electron- 
electron potential which we take to be an external electron, either from the 
conduction band or a neighbor, which undertakes an invasion into the Wigner- 
Seitz sphere under consideration. Because this electron is indistinguishable 
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from the cellular electron we require that Poisson's equation be satisfied in 
the following way: 

- 1 . 5  
V 2 [/Tee = - -  ~ * ~ )  ( 2 . 7 )  

rs 3 

as a concomitant condition. Thus we have a system of two equations, (2.6) 
and (2.7), in two unknowns, Vee(r) and if(r). 

Since solutions to Poisson's equation are analytic functions which reflect 
the complex arguments of its source, we shall obtain real functions for Vee ; 
hence the Hamiltonian will remain hermitian and the eigenvalues of the 
Schr6dinger equation should then be real. However, the Hilbert space is a 
complex vector space so that a Neumann boundary condition has two parts. 
Both real and imaginary parts of the gradient must vanish. These two constraints 
then lead to discrete values for E, as welt as rs, a parameter in Vee ; hence, in 
principle, the crystal lattice should come out to a quantized structure as a 
result of Vee as long as the wave function is complex. In the absence of fore- 
knowledge, the solution of these two equations must proceed by successive 
iteration, and hence should start from the simplest assumption. We choose 

¢ = 1 (2.8) 

as the simplest wave function which has the proper cellular boundary condi- 
tion. Then the solution of equation (2.7) leads to 

r 2 
Wee = - -  (2.9) 

r s  3 

a repulsive harmonic oscillator potential. We are further constrained by the 
static calculation of Wigner and Seitz (1934) who obtain -1 .8004/ r  s (Ryd.) 
for the average expectation value of V. Utilizing 

1 1 r 2 
1 (2.10) - :  V = - - + - - - -  

r 2 r 9 

for the composite potential felt by an invading electron (in Rydberg units) 
one obtains 

rs 

~ ~*V~/r2dr 
-9  

E = o = - - -  (2.11) 
rs 5rs 
f ~*~r2dr 
o 

a value which is within 2 x 10"Tpercentile accuracy to the extensive calcula- 
tion of Wigner and Seitz. The composite potential (2.10), when placed in the 
SchrSdinger equation, should be expected to yield an evaluation of the kinetic 
energy in accurate association with the agreement to the static Wigner-Seitz 
calculation. Normally the Thomas-Fermi atomic model is used for this 
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calculation (Satpeter, 1961). However, this model is also used for the isolated 
atom, hence it is not clear whether the difficulties mentioned between the 
two types of boundary conditions are surmounted or ignored. 

Furthermore, one should expect that one more iteration would be possible 
by this method, perhaps by standard perturbation theory, if the accuracy of 
the dynamic solution is comparable to the static one just performed. It is 
clear that the series iteration for the potential must acquire an angular part 
with the r 4 term. This can be argued from the electrostatic images induced in 
a spherical electron cloud. In the body-centered cubic lattice, there would 
be eight such images. The angular distortion of the cell must be a vector 
which satisfies the symmetry requirement that the potential must be 
invariant to rotations in intervals of 90 °. 

0 -~ 0 + mr/2 

0 -+ c~ + n~/2 (2.12) 

Since the potential must also be a basic solution to Poisson's equation, in 
which no additional change is generated by angular distortion, we must con- 
clude that the predominating angular dependence of the potential must 
commence with the Legendre polynomial P4. Hence we can write that 

r 2 r 3 r 4 
- Vee =.--5+ Vl - -+ v2 - -  Y2 (O, cb) (2.13) 

r s rs  4 rs  s 

in which v 1 and v2 are constants normalized at each stage of iteration such 
that the total charge in the Wigner-Seitz sphere remains the same. 

This implies that wave functions are not accurate beyond Cubic order due 
to the angular distortion of the cell. We shall solve for the complete formal 
solution in first order but refrain from placing trust in any terms beyond the 
cubic ones. 

In summary, this calculation is equivalent to separating the Schr6dinger 
equation for two electrons into that for only one by subjecting the product 
wave function to a simple Hartree procedure. Since the electron-electron 
interaction is symmetric, it can be divided in half giving each equation an 
equal portion. The stable solution implies a long-range order which is periodic 
and thus confirms that the cell exists. The unstable solution does not necessarily 
imply a phase transition but that some plastic-fluid state describes the material, 
perhaps better described as visco-elastic. 

3. Formal Solution of  Metallic Hydrogen Cells 

Given the Schr6dinger equation for a foreign electron invading a spherical 
cell of hydrogen, 

[ 1 ~ r2 ~ - ~ r  ~r +-+2r rslr2 I ( I+ t )+E]~  = 0 ' . 2  (3.1) 
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in which r is in Bohr radii and the energy is in units of the ionization energy 
of the isolated hydrogen atom. We seek a series solution of the form 

~=rl  exp(ir2/2ras/2) ~ (an + ir3s/Z[3n)r n 
n=O 

(3.2) 

and are led to the coupled doublet recursion relation. 

EaK + 2aK +] 2l + 3 + 2K 
aK+ z =-(K+2)(21+K+3)4(K+2)(21+K+3)~K (3.3) 

E~K + 2/3K+ 1 _ 2l + 3 + 2K aK/rsa (3.4) 
~K+2=-(K+2)(21+K+3) (K+2)(21+K+3) 

which is asymmetrical only in the occurrence of  the inverse cube dependence 
ofrs appearing in equation (3.4). If  we were to set r s equal to infinity and 
then set ~K equal to zero, we would obtain the solutions appropriate to the 
confluent hypergeometric series, in which case the Balmer formula would 
result from the inevitable choice to terminate the series before it becomes 
singular at infinity. On the other hand, the solutions for metallic hydrogen 
obtained by Kronig are displayed by cellular boundary conditions. In this 
case we find, 

r 1 Er 2 ) 
. . . . . . .  + - -  + . etc. (3.5) 

~-r l 1 l + l  2 2 l + 3  "" 

Then for l = 0, this wave function has an extremal at r = rs, when 

E = - 3 / r s  (3.6) 

the correct result of  our antecedent (Kronig, DeBoer & Korringa, 1946). 
We therefore appear to  have incorporated and reconciled the results of  

Kronig and Winger-Seitz in our formulation o f  the Schr/Sdinger equation so 
that no longer must a choice be made between the two developments. The 
coefficients may be computed as follows: First of  all the principal term So 
is a convenience which is factorable from all terms and may be set equal to 
unity in order to closely resemble our static choice in equation (2.8). This 
requires that the associated imaginary component be equal to zero -/~o = 0. 
The next term removes the Coulomb parts of  the series and we are led to 

- 1  
~, = . ~ - : ,  /~1 = 0 ( 3 . 7 )  

l ± l  
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The remaining terms may now be generated automatically and, to fourth- 
order terms, are 

ao = 1 ; t3o =/31 = 0; t32 = - 1/(2rs a) 

1 1 
~ t  = - -  ......... /33 = 

l+  I 2(I+ l.)rs a 

1 E E i 

a= ( l+1) (21+3)  2(21+3) t34 4(21+3)r ,a+2(l+l)(21+3)rsa 

a 3  
E(31 + 4) 1 

6(1 + 1)(1 + 2)(2l+ 3) 3(l + 1)(l + 2)(2l+ 3) 

1 E 

a4 = 6(l+ 1)(l+ 2)(2•+ 3) - 12(l+ 1)(1+ 2)(2l+ 3) 
(3.8) 

Terms of higher order than this see the appearance o f r  6 in the denominator 
of the/3's while cubic expressions addend the a coefficients. They are not 
particularly revealing and will be ignored with justification once their influence 
has been assessed. 

If we now seek an extremal of the wave equation (equation (3.2)), we are 
led to two conditions by the independent obliteration of real and imaginary 
parts 

[(l +/OAK --BK+llrs K = 0 (3 .9)  
K = 0  

[o~ K + (l +K + 2)BK+2]r K = 0 (3.10) 
K = 0  

in which we have defined 13 = B/rs 3. These are two equations in two unknowns, 
E and rs, for each integral value of L Considering the propagation of higher 
than cubic terms in the denominator of/3 and corresponding effects upon the 
ee coefficients wilt yield the following series within a series 

( l + g  - 1)(2K + 2l+ 5)(2K + 2l+ 1) 
(l + k)aK + (K + 1)(/£ + 3)(2l +K  + 4 ) (2 /+K + 2) aK-  1 

(l + K + 6)(2K + 21 - 1)(2K + 21 + 3)(2K + 21 + 7)(2K + 2t + 1 t)  
+ . . . . . . . . . . . . . . . . . . . . . .  0~K+ 1 K(K+2) (K+4) (K+6) (21+K+ I ) (21+K + 3)(2• +K  + 5)(2• + K +  7) 

+etc . . . .  - B g + l ] r  K = 0  (3.11) 
/ 
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(2/( + 2l + 3)(2K + 2l + 1) 
(K + l ) (K + 3)(21+ K + 4)(21+ K + 2) °~K-1 

(2K + 2 l -  1)(2K + 21+ 3)(2K + 2l+ 7)(2K + 2l+ 11) 

K(K+2) (K+4) (K  + 6 ) (2 l+K + 1)(21 +K + 3)(2l+ K + 5)(21+K + 7) C~K-2 

l 
+ etc . . . .  (l +K  + 2)BK+z [ r ~  = 0 + etc . . . .  (3.12) 

. i  

in which a summation over the index K is implied, and all coefficients with 
negative index are zero. 

In any algorithm for the computer, equations (3.3), (3.4), (3.9), and (3.t0) 
should be used directly; however, we wish only to dissect these equations into 
some recognizable form. If we choose only the first and last terms in 
equations (3.11) and (3.12), which give us the lowest order solutions, then 
we obtain the following two results for the first three terms which contribute 

2l(2l+ 3) 2 E =  2(2 l+3)  t + - - + - -  (3.13) 
(l+2) r, (l+2)r~ I+1 

and 

l + 1 [1 + x/(1 - 8l/(l + 1))] (3.14) 

because rs must be real, we see that only the s wave solution exists, l = 0, in 
which case we obtain two solutions for the radial quantum number, rs = O, 1, 
which yield the corresponding energies o f E  = - %  - 1. Both solutions of the 
free hydrogen atom and the catastrophic solid occur, i.e. one with a stable 
Bohr orbit at the Rydberg energy as well as the Kronig unstable solution. The 
energy agrees well with the Jellium model; however, the radial quantum number 
is off by 50%. Although this result has numerical limitations, it does show that 
to first order the solutions of SchrSdinger, Wigner and Seitz, and Kronig find 
their reconciliation in a formalism such as this. We note that the Coulomb con- 
tribution at l = 0 contains the Kronig catastrophic structure o f E  = -3/rs;  
however, the kinetic energy adds a term of +2, hence the Rydberg energy 
occurs when the sphere is quantized to Bohr dimensions, rs = i, in this order 
of approximation. Proceeding to increase the order of approximation to the 
principal terms of the energy as expressed in equations (3.10) and (3.11) we 
obtain a result which is, in some respects, more satisfying physically. 

E = - \ ~ - ~  aJrs  ( l + 2 ) r 2  -~l+1 

(2l + 7)(2l + 5)(2l + 3)( /+ 1) (3.15) 
5 .3 ( /+  3)(l + 2)(l + 2) 
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and 

15 (13l + 18)( /+  3)(/+ 2)(/+ 1) 

rs = 4 (2l + 3)[(2l + 7)(2l + 5)(21 + 1)(I + 1) + 30(l + 3)(l + 2)] 

(3.16) 

Now the radial quantum number is real for all values of  the angular momentum, 
For each value of  l there is one unique value o f r  s contrary to the Balmer 
formula in which rs is any integer inferior to/ .  Numerically we obtain that 

rs(O ) = 0-628 Bohr radii 

and 
E(0)  = - 2.194 atomic units 

(the energy must be halved to obtain it per electron). 
For the 's '  state, l = 0. For the next level, l = 1, we obtain 

rs(1 ) = 0.756 Bohr radii 

E(1)  = +3.423 atomic units 

The energy is quantized, but positive, and continues to be positive for all 
values of  1 above the ground state; hence the slightest non-zero contribution 
of the centrifugal potential yields a positive energy to a foreign electron 
which is imbedded in the Wigner-Seitz sphere. 

Table 1 lists a few of  these energies. We note that the Wigner-Seitz sphere 
increases for l = 1 above that of  l = 0, then monatomically decreases. We also 

TABLE 1. Quantized metallic hydrogen (uncorrected) 

l r s E E/2 

0 0.627 - 2 . 1 9 4  - 1 - 0 9 7  
1 0"756 +3.423 +1.712 
2 0.678 +12-08 +6-04 
3 0.581 +27.92 +13.96 
4 0"499 +53.70 +26.85 
5 0 435 +92.05 +46.03 

note that as the angular quantum number increases, the size of  Wigner-Seitz 
cell decreases. This is because the energy becomes more and more positive, 
requiring greater and greater external pressure to hold the substance together 
and this pressure must keep the material compressed. 

4. Electronic Lattice Dynamics 

The collective effects of  the lattice are not fully accounted for in the cell 
model. This is especially true of  the scale factors which contain the mass, i.e., 
what is known as the Rydberg constant and Bohr radius. The Born-yon Karmen 
(1971) of  the Bloch conditions may be used to calculate the effective mass 
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of the electron in an actual periodic potential. We assume that the wave 
function can be expanded in a Fourier series, 

q~ = ~ exp (iK. r)r l exp (ir2/2r~n)fK(r) (4.1) 
K 

in which K is a wave number which reflects the periodic size of the cell. 

K = 27rin/r s (4.2) 

Substituting the Fourier component (4.1)into the Schr/Sdinger equation (3.1), 
gives the following: 

[ V2+2ik" V - k Z (  t -m°t+Eme] l(l + 1)+ 2 + ..--ff rt exp (ir2/2rs3n)fK = 0 
r 2 r rs ] 

(4.3) 

in which me is tile effective mass of the invading electron, used to renormalize 
the Rydberg constant and the cell size, E is the cohesive energy calculated in 
the previous section. We take the vector k to be in the x-direction as a con- 
venience. We then assume a solution in a square array of the form 

fK = ~ ( iK)mxmAmnrn (4.4) 
m n  

in which we can associate these coefficients with the original ones. 

A o n  = OL n + irs3 ~n. (4.5) 

The coordinate system is non-orthogonal, and with this precaution the gradient 
and Laplace operations are carried out to yield, 

E _ K  2 1 _ m °  +-EgT?-i+--+ +r~sn(m +n)  
r s r r 2 

+ + ( iKx)mrnAmn = 0 + 2iK + x r 2 

(4.6) 

By correspondence with relation (3.7) we rearrange this equation into the 
form 

[ (E  2 1 + 3 + 2 n . ~ + 2 + n ( 2 1 + n + l ) ]  mA rm+n~iK~ m 
+ rs3/2 t )  7 r 2 - l i d  m n  I )  

2 m ( l + n )  2ira 2iK 
+ - - n p  + - -  + K2(mo/me - 1) + r2 +_357 

rs r 

2iKm 
12 2 

m ( m - -  
--llr~ 1) ]pmAmnrm+n( iKlm = 0 (4.7) 
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in which we have written 

x = pr, ~ = cos 0 (4.8) 

The first term in brackets is recognized as the original recursion relation, 
equations (3.3) and (3.4), which vanishes for all A on. Since we are justified 
in only going to quadratic order, we tabulate only the appropriate terms. 
Three of them are given by combinations of formulae (3.8), the other four 
are as follows: l(m  ) 

Alo =2 - 1 

All =( l -m°]/(l + 

A12=~  - 1 -  ( l + I ) ( 2 l + 3 )  2(21+3) 

i too_ 

The wave fnnction to this order is 

q~K -- exp (iK. r)r t exp (ir2/2r3s/2) 1 - ~-1 + (l + 1)(2/+ 3) 2(2/+ 3) 

-rTsn)r 2\-~e e - 1  W+-(l+t) l-re°me/" 2 

x ( l + 1 ) ( 2 / + 3 )  2(2/+3)  

3)} 
/fir2 + 2 - 1 -  

(4.10) 

So far we have not used the normalization condition for the wave function. 
We normalize it to a unit cell. This is a real relation and guarantees us a real 
value for the effective mass. Expanded to quadratic order gives 

2r r 2 . ) 
2+2{  1 E ¢~CCK~--r 2l 1 / + 1  ( /+1)  \ ( / +  1)(/+ 3) 2(2/+ 3) r2 
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We now apply the condition 

+1 rs 3r53 

--1 0 

and obtain the requirement 

(4.12) 

1 r s rs2 ((/+1)(/+1 3) 2(21+E 3)) 
2 / + 3  ( / + 1 ) ( 2 / + 1 )  ( /+1 )2 (2 /+5 )  ÷2 

r 2 2K2 ( m e / m o  K 2 ( m e / m  o - 1) 2 87rr s 
1 ) r ;  - ~ rs 2 - (4.13) 

x 2l  +-'---5 - 3r~/2 (2l + 5) 6 2l + 5 3 

The dominant term gives 

me = too/(1 + 27rr3s'S/K 2) (4.14) 

in which K = 27rn/r s ~> 10 for the ground state and n is a positive definite 
integer. The effective mass of the ground state is then m e  = mo/0-981. 
According to Kronig, who used a method due to Bardeen (1938), the effective 
mass of the uninvaded cell is altered by a factor of 0.966 (Schweker, 1962). 
Thus the first-order calculation agrees well with the Bardeen value. Bardeen 
obtains his number by evaluating the kinetic energy by means of a solution to 
the Schr6dinger equation. Since we have carried out our solution a few steps 
further, we should be able to obtain a correction to his term. Equation (4.13) 
is a quadratic equation and can be solved, in which case we obtain a value of 
0.772 rather than 0.981. This then alters the size of the crystal as well as the 
zero temperature cohesive energy. 

Normally one must correct the static energy for the exclusion principle. 
This is the zero point kinetic energy of electrons which is taken as the 
average Fermi energy. However, this term is accommodated by the Laplacian 
since we actually solved the Schr6dinger equation. Three classical corrections 
are in order, the first being Dirac's exchange term which accounts for electrons 
of parallel spin repelling one another, more so than anti-parallel spin. This is 
an attractive term since it results from the cross terms of the antisymmetrized 
wave function whose value may be found in Schweber (1962). It amounts to 

0.458 
E ~  = - - -  ( 4 . 1 5 )  

r s  

A further correction to this term by GeU-Mann and Brueckner (1957) 
accounts for the omission of ionic fields except for a homogeneous average 
effect. Hence to second order, equation (4.15)must be supplemented by the 
correlation energy 

Ec  = -0-062 lnr s - 0-096 (4.16) 

These are the principal terms of a power series, hence valid for r s < 1. Both 
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these corrections tend to bind the lattice tighter; however, one additional 
term is repulsive and this is the change in ionic potential and kinetic energy due 
to ionic vibrations. The use of a sophisticated phonon spectrum would hardly 
be consistent with the previous corrections so that we follow the procedure 
of Salpeter and use the quantum theory of small oscillations for small nuclear 
displacements from the lattice site. This gives the contribution of zero point 
energy, 

E z = 3 x / ( m / M ) / r ~ s  "s (4.17) 

which is small due to the appearance of the electron-hydrogen mass ratio 
(square root). 

The sum of these corrections is as follows: 

0-458 
&E = 0"062 In r s - 0"096 + O.07/rs a's (4.18) 

rs  

< 
~3 

L9 
I..M 

20.0 

18.1 

16.2 

14.3 

12.3 

10.4 

8.50 

6.57 

4.65 

2.72 

.799 

E / 
METALLIC HYDROGEN 

i I I I I I I ........ I I ............ I ................ I 

GRAMS/CC 

Figure 1. 
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For a body centered cubic lattice we have the following relation between the 
length of  the cube edge (a) and the nearest neighbor distance (d) 

ne = ½a 3 = 4da/(3 x/3) (4.19) 

Therefore the volume of  a cube is 

V= 8rrrs3 /3 (4.20) 

The sum total of  these corrections produces a zero temperature cohesive 
energy o f -  1.142 Rydbergs, a cell radius of  0-8137 Bohr radii, a density of  
4-8 g/cc, a pressure of  20.05 Mb and a latent heat of  134-4 kcal/g. The pressure 
over other ranges of  density represents variations in the wave vector K of  
equation (3.16) and hence the differentiation of  the energy from the upper 
and is justified to obtain the pressures below the above values. This leads to 
the following expression. 

mo [ \ ,  , ,. + 6  - + 0"458 / + 3  r,  s 
0.062 + 0.035____~6] 

r2  rs 4"s ] 

O.21)  
in which me/too is the effective mass ratio. 

A plot of  this curve as a function of  density is given in Fig. 1. The curve 
appears to be rather linear with minimum at a density well into the molecular 
range. Therefore there is no zero pressure form for metallic hydrogen. Figure 
t passes close to the classical results in the theoretical literature at lower 
pressure; however, within the sphere of  consideration of this theory, this 
lower pressure range is fluid and the metallic region has a range too short to 
be o f  practical significance to the equation o f  state. It is of  importance only 
in that the heat of  fusion changes sign with an increase in density with a large 
heat capacity equivalent to the temperature change of  2300°K. This is an 
ample heat sink to thermal content of  the planets. 
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